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In this paper the three-dimensions1 (axlsynrmetrlc) prohlem of nonsteady pro- 
pagation of a crack in an elastic medium under the influence ofahomogeneous 
tensile stress 1s solved. The analogous plane problem was considered In [l]. 
An analysle of the formulation of the problem of [l] and the results Is given 
ln [2] based on consideration of the cohesive forces acting near the edge of 
the crack. In this work an equation was obtained for the speed of propaga- 
tion of the crack. A comparison with the experimental results of Wells and 
Post [ 33 may be found In the same reference. The plane problem of propaga- 
tion of a crack after a semi-Infinite cut la Instantaneously made In a stres- 
sed medium Is solved ln [ 43. 

The solution of the axlsymmetrlc problem Is carried out below. Formulas 
are obtained for the displacement at the surface of the crack and for stres- 
ses near the cage. It 1s shown that, just as In the plane problem, the speed 
of propagation of a crack cannot exceed the Raylelgh surface wave velocity. 
An equation which determines the spead of propagation of a crack Is obtained. 

1, ?omulatlon o? the problem. Let an unbounded elastic medium having 

shear modulus v and longitudinal ‘and transverse wave velocities c and b, 

respectively, be In a state of homogeneous tension for t<o, so that only 

a single component, 0,’ , of the stress 

tensor Is nonzero. A crack IS formed at 

the instant t = 0 at the origin of 

coordinates. The crack then propagates 

in the plane _- - 0 with constant velo- 

Fig. 1 

city c . For t > 0 , the surface of 

the crack in h cylindrical system of 

coordinates P, cp, I 1s defined by the 

relations (Flg.1) 

z = 0, r < at 

The surface of the crack Is to be free from stresses (we shall neglect 

the forces of molecular coneslon acting near the edge of the crack, conslcer- 
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ing this region a8 lnfinlteslmally narrow), Therefore, the elastic dlsturb- 
antes caused by the propagation of the crack must satisfy the conditions 

b-2 = 
6 -uz , GZ = 0, T-q, 30 for I =o, 

on the surface of the crack. 

These disturbances are absent at the initial instant 

expressed by the homogeneity of the initial conditions 

u=u ‘=O for t=O 

of time, which 1s 

U-3) 

where u 1s the displacement vector wlth components u,, IA and uz . It 
Is obvious here that U, z 0, 

cp 
and that all the remaining quantltles are lnde- 

pendent of cp (axlsymmetrlc problem). The dot denotes differentiation with 
resect to time. 

In addition to the boundary and initial conditions, It Is necessary to 
impose a further condition on the behavior of the solution In the nelghbor- 
hood of the edge of the crack. This additional condition which restricts 
the order of growth of stresses near the edge of the crack can be obtained 
by conslderlng the additional stresses generated by the forces of cohesion 
121. A somewhat different method 1s proposed below. It Is clear physically 
that a certain amount of energy Is dissipated upon formation of the crack. 
Using the enegy integral of the equations of motion applicable to the total 
field, it can be establlshed that the rate of energy dlsslpatlon (the.power 
expended in formation of the crack) is equal to 

W=lim t,v- 
41{ 

i [p (v)¶ + ts] a co9 (n, r) ds 

8 I 

where c and 7 are the strain and stress tensors, VEU‘ Is the velocity 
vector of the particles of the medium, the surface ,$‘a surrounds the edge 
of the crack and 1s at a distance 4 from it, and n Is the outer normal 
to s,. Thus, we require that the integral in (1.4 
positive (nonzero) llmlt independently of the way b 

approach a flnlte 
shrinks down to the 

edge of the crack. The second term in the braces, w)(llch la related to the 
motion of the surface of lnte atlon, gives zero in the limit. This may be 
shown by choosing a surface whose Intersection with the f.3 plane 
has the form of a rectangle sides 24 and 24 in the r a$d s eufc- 
tlors, respectively, and by letting 6% approach zero for fixed 1. t 
the requlred condition has the form 

0<2mat lim 
s 

M 16 

t,,vdl< 00 (2.5) 

where ‘la 1s the section of S, by the rz plane. Here the symmetry of 
the problem with respect to the t-axis has been used. It will be shown in 
Section 3 that the stress and velocity components have slngularltles of the 
same order for r + at and I - 0 . In order that the integral (1.5) 
approach a finite llmlt it Is, therefore, necessary that t e stress and velo- 
city components (or at least some of them) increase as (I -F near the edge 
of the crack. 

It Is easy to see that the stress and velocity components must be homo- 
geneous functions of the coordinates and time of order zero. From this and 
the requirement on the rates of Increase which has been shown, lt fOIIOws 
that the asymptotic expressions for the components of velocity and stress 
muat be proportional to Jtfb as b - 0 . The integral ln (1.5) then turns 
out to be proportional to t , I.e. w - P. This con;;Ci~on seems strange 
since the surface of the crack Increases at the rate so that the 
energy Is not dissipated proportionally to the area. This may be explained 
In the following way (see also [2] ). It can be assumed that the edge of the 
crack ls $urrounded by a region in which plastic deformation of the sU%terlaI 
takes place. In the present problem this reglon 1s considered to be lnflnl- 
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tesimally small; however, It actually has small but finite dimensions. Since 
the plastic region is absent at the initial Instant, Its dimensions must 
Increase at the same time as the crack grows, until they attain some statlon- 
ary magnitude. It may be considered that for small values of t the dlmen- 
slbns of the plastic region Increase at a constant 
rate of propagation of the crack, c ) and that the 

rate (proportional to the 
energy expended in forming 

the plastic region increases proportionally to its volume. We may then set 

W = 2n aVC (C = cod) 

We obtain the additional condition in the form 

instead of (1.5). 

lim 
,s 

t,v dl = a*tC 

h 
U.6) 

We note that the variation of stresses In the neighborhood of the edge of 
the crack proportional to m was also obtained In [ 1 and 41, and has 
been confirmed experimentally as well [2 and 33. It Is clear from the above 
explanation that the assumption of a constant velocity of propagation of the 
crack Is valid only for the Initial stage of crack growth. This conclusion 
was arrived at [2] from somewhat different considerations. 

It Is convenient to reduce the problem to a boundary value problem for 

the half-space E > 0 . To do this we note that on passing through the plane 

z = 0 the stresses must be continuous everywhere and the displacements con- 

tinuous outside the crack. We split the displacement vector into symmetric 

and antisymmetric parts relative to the plane o = 0 . In the antisymmetric 

part, ur and T,. are even and uI and c, are odd functions of z . Using 

the Indicated requirement of continuity and conditions (1.2) we see that u, 

and cz in the antisymmetric part should vanish In the entire plane a = 0. 

This, together with the Initial conditions, shows that the antlsymmetrlc part 

Is Identically equal to zero, i.e. that the solution of the problem Is sym- 

metric with respect to the plane s = 0 . Then U. and 7,, are odd and u, 

and c, are even with respect to r . This gives the boundary conditions 

for z = 0 
z,, = 0 for 2 = u, o<r<=J 
a, = - a,” for 2 = 0, Ogr<at 

=o 
(4.7) 

4 for z = 0. at<r<m 

2. 8olutlon OS the problem, The solution of a selfsimilar axisymmetrlc 

problem, when the components of velocity and stress are homogeneous functions 

of the coordinates and time of order zero, under the condition 

z rz=o for z=o, o<r<oc (2.1) 

can be written In the form [5] 

24,’ E v, = v&l) + up, q(LS) = Re f Vz(‘*‘) (f$1s8)) d $2 
-I (2.2) 
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where 2)(l) and eta) are determined from Equations 

d(l) s t - fP r cos Q -2 J&a _ #.)9(l) 2 = 0 

@aI rt-6(“)rcos~--_zZ/b-8_~(8)a= () (2.31 

and the functions under the integral signs are expressed in terms of a single 

unknown function F(6’) by the relations 

6 p’ (fq = - 4bW vm F’ (+“) 

24F (1- 2b2a2) F’ (4F) 

Primes denote differentiation of the functions with respect to their argu- 

ments (i.e., for Instance, VJ’)’ (@) = fl$“’ /de, but F’ (a’) = dF / d (a*)). 
This solution Is obtained by the method of V.I. Smlrnov and S.L. Sobolev (*). 

For 2 = 0 the functions #@) and 4’“) assume the same values, 

@Q) = #(a) ==t/rcosQ=6. 

Differentiating the second and fourth expressions of (2.3) with respect to 

time, setting Z = 0, using (2.4), and transforming to the new variable 

Y = 62, we obtain 

$ v,’ = Re 
s 
1, 

F’ (v) vdy ror z=o (2.5) 
v - V@ 

; UL. = - 4pb2 Re 
s 

!?__ F’ (v) dv 
I, )/al-v I/v-v0 

% = t2/ r2, 
-- 

R (v) = (v - +‘2W2) + Y J&Z-~ - v k’b-2 - v (2.6) 

with the path of Integration shown In Fl.g.2. We define the principal values 

,vRaY 

of the radicals occuring In (2.5) by making 

suitable cuts along the positive real axis and 

by requiring that 6 and ?/b-a_ are 

positive, and v‘- equals $6 for v= 0. 

Fig. 2 

*) Chapt. XII of [63. 
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In order to satisfy the Initial conditions we require that (2.5) vanish 

for f > at , i.e. for h< l/a1 . For this It Is necessary that the lnte- 

grands decrease sufficiently rapidly at infinity and that It Is possible to 

deform the path of Integration freely In the half plane Rev< V, for 

V, < l/al . It follows from this that F’(V) mat be regular except at the 

cut f*om l/a’ to = and must decrease faster than v-’ a8 v - =. Further, 

It follows from the boundary conditions (1.7) that the first of the expres- 

sions of (2.5) vanishes for r>at, I.e. for kc l/a=. For this to 

occur, the function F’(V) should be regular for Re v < l/a’. The second 

expression of (2.5) must disappear for r<at > I.e. for v,,>l/a’ for this 

to occur the lntegrand must be regular and singlevalued for Rev> v,> l/a”. 

These considerations make It possible to find F’(V) . The final expression 

for F’(v) depends on the magnitude of a . Let us first examine the case 

O<a<o , where c Is the Raylelgh surface waveSvelocIty (R(l/ca ) = 0) . 
In this case the condltlcns which have been enumerated are satisfied by 

Expression 

F’ (4 = @_;T;)* 

where n Is an integer and ,4(v) Is an integral function which does not 

vanish for v - l/a’ . To determlne n It la necessary to return to the 

additional condition (1.6) which, In particular, requires that the function 

0, Increase like 8-t as b I It- at\ - 0. Therefore 0,’ must behave like &-% 

and this will occur only for n = 2. TaWng Into account that F’ (v) = o (v-l ) 

for v-m, we conclude that A (v) must be bounded and that A (v) = A - const . 

ThUS 

The following expressions can be obtained analogously to (2.5): 

s 

dV 
uz = - cl@* VT0 Re G (Y) _ 

1, 
vvv-v, 

for z=o (2.8) 

where 

F(Y) = i F’ (h) dh, G (v) = 5 ,/& F' (h) dh (2.9) 
0 0 

Here the lower limit of Integration Is chosen equal to zero 80 that the 

POlA v = 0 Is not a pole of the lntegrand ln (2.8), which Is necessary In 

order to satisfy the boundary conditions. The function F(V) may be com- 

puted directly and Is equal to 

F (v) = e (2.10) 

However, G(V) Is transformed in the following way 
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G (Y) = r $$& F’ (v) dv + s $h) h F' (A) dli = M + G, (Y) (2.11) 
0 03 

It Is now clear from (2.8) that u, la actually equal to zero for r= at. 

Considering G(v) In the form (2.11) we see that G,(V) changes sign upon 

passing through the cut from l/a” to 0~ , and that the Integral of this term 

in (2.8) vanishes for v, > l/a”. Therefore, 

0, = - 4pb2 
s 

dv 
l vvy--yo 

M 1/G = - 8ptb2M for .z = 0, r <at 

Y 

This value should be equal to - a,O, i.e. 

- QZ’ = 8pfib2A s - - co (V + l/ab-a) - v l/a-a + .v v/b-a + v dv 

(z-8 + v)l I/q 
(2.12) 

0 

From this relation we obtain the value of A . Since A is negative, 

we aet 
Al=-22nA (2.13) 

Ye now find the expression for v, at I = 0 

VZ = vs2 for z=O, r<at (2.14) 

Integrating this expression with respect to time, we obtain an expression 

for the displacement of the surface of the crack 

U, = &4 1 -t/a%2 - 9 (2.15) 

The condition (1.6) still remains to be satisfied. This will be done In 

the following aectlon. 

Let us now turn to the case 0 < a. < b . The zero of the function R(v), 

I.e. the point v = l/ca now lies to the right of the point v = l/a’. There- 

fore F’(vf can be taken in the form 

F’ (v) = A W 
(9 - v) (a-* - v)” 

(2.16) 

As in the preceding case we conclude that 7~ = 2 , but now A(v) turns 

‘out to be a linear function, which we write In the form 

so that 
A (v) = A (c-2 - v) + B (a-” - v) 

F’ (‘1 = (a-25 vp + (c-a_vjya-a_ v) (2.17) 

The first term coincides with the solution for the case O<a<o , but the 

presence of the second term shows that the problem is now indeterminate. 

For we obtain, instead of (2.12), Equation 
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co 

__bro= 8Ctp’n.A 
[ s (v+%b-‘)‘-v )/i-r )/L-ldv+ 

0 
(a-a+v)s)/a4+ v 

+$ 
-- 

(v +‘/ab-‘)’ - v )/.-a+ v vb-‘+ v dv 

(c-2 + v) (a-’ + v) fa-’ + v I 
0 

which is Insufficient to determlne the two constants A and B . 
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(2.18) 

&I the case b < 0 c Q , the function F’(v) is constructed In a more 

complicated way, but it can be shown In this case that the stresses cannot 

have a singularity of order # at the edge of the crack. For this reason 

we shall not dwell further on this case. 

The solution obtained for the case 0 < 0 < ,J Is single valued so that 

the velocity of propagation of the crack, Q , Is determlned as a function of 

the :nltlal stress a,0 from the condition (1.6). In the following section 

we shall see that for o c a < b the condition (1.6) cannot be satisfied 

since the Integral on the right-hand side of (1.6) proves to be negative. 

3. Bohavlor of thr rolublon near the odgo of the oraok. The asymptotic 

behavior of the solution near the edge of tne crack (F = at, I = 0) Is deter- 

mined by the singularity of F’(V) at the point v = l/a’. Since In (2.17) 

the second term has a weaker singularity at this point than the first term, 

the former makes no contribution to the leading term of the asymptotic expan- 

sion of the solution near the edge. Therefore, the asymptotic behavior of 

the solution must be studied with F’(v) in the form (2.7) for 0 < a < b . 

First of all we calculate the original functions (2.4). However, since 

only the behavior of the solution near the point 7 = af, i = 0 Is Important, 

It suffices to calculate the first terms of the asymptotic expanslons of 

these functions near the points @“) = & 1 /a. To do this we proceed as 

follows : 

The second term has a singularity no greater than a logarithmic one at 

the points i)(l) 
= *ifa while the first term has a pole of order one. 

Thus 

Analogously, 

ve(i) (+(I)) ~ aaMP s (i - 2b*6(1) 2, 

(a* - f)(l) a, .I/*-* _ f)(l) 2 
(3.1) 

vE(2) (p) = - 
2@,¶&‘) ‘2 vb-n _ f)(s) 8 

a-9 _ f)(l) B 
+ 0 (ln (1 - aw’y) (3-2) 
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VJl’ (P) = 
aSA@” 2 (1 - 2g(E(” 2) 

a-a__ 6(l) 2 
+ 0 (In (1 - u2fP 2)) (3.2) 

(wnt) 

J7*(2) (,(2') = ~_~~~~~;~ + O(In (1 - a26'2'2)) 

_$,p) (fp)) 2a2baAd1) 2 = ((t(‘) 2 - l/P b-*)2 _ 

~~(a-a_f)u)2) 
+ 0 (In (1 - c&w 2)) 

6 JTI(2) p(2)) = _ 2u%a‘46@) * h-3 -f)(S) 2 
0 - a-2 - t)(2) 2 + (ln.(l uYtc2~ “)) 

~~&~'l') = _ a*AB(l~_(l - w6(1)2) 

2, 62 
+ 0 (In (1 - ct2tP *)) 

$- z$;!g (lp) = aaA*(2;yp(~-6~f(2) 3 + 0 (l* (1 _ a2#2) 2)) 

We can now write 
n 

V$” z a2A s 6(l) 2(1 - ~2fj(l) 2) 

(a-* - f+l)2)J&C$G 
cosQ dQ (3.3) 

-l% 
It 1s convenient here to transform to the variable Integration v = 8t1j2. 

We then obtain 

vm 
r 25: s (I- 2Pv)dv 

(a-'-v)‘r/a -~-vvv-a-a(1-2q-2%~ I/6-v (3.4) 
l(1) 

correct up to terms of order lnizl and ln(at - r 

Here 7 = (r - at) /at, 5 = z/at, and the path l(l) Is shown In Flg.3. 

Fig. 3 Fig. 4 

The ends of the path are at the points 

(1) 
v1,2 = a-2(1 _ 2q + 2igJo - da-~) 

The principal value of the last radical in the numerator of the lntegrand 
of (3.4) must be taken so that It has a positive Imaginary value for \I = 0. 

The path l(l) may be deformed as shown in Flg.4. It 1s now clear that the 

asymptotic behavior of the Integral for q, { 4 0 1s determined by the 
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behavior of the integrand on the straight-line portions of the contour near 

the points y,(l) and v,(S), and we easily obtain 

v,(Z) ‘-- - 2 ‘J&PA vm Re 

v,(l) z - -A ( aa - 2P) Im 

(3.5) 

(3.6) 

We now turn to condition (1.6). Let us take the contour la in the form 

of a small rectangle with sides 26, and 28, in the r and I dlrectlons, 

respectively, and let Oa go to zero for fixed b, , Then the integrals on 

the sides parallel to the t-axis vanish and the left-hand side of (1.6) takes 

the form al+&, 

2 lim lim 5 (GzVr + ozvz) dr 
ho b-m &_&* _ 

It is easy to see that T,, has no singularity at r = at ) s = 0 , so 
that the Integral of the first term may be dropped. With the aid of (3.6) 

we obtain 

8pn3beA2 VI 
_ a'& Jf 1 - azb-* - (1 - 1/&b-2)2 = c 

Jfi--a2a_? (3.7) 

It is clear from this that a cannot be greater than or equal to c , 

since the left-hand side changes Sign at a = c . Substituting the value 

of A from (2.12), we have 

where 

(3.9) 
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Equation (3.8) determines the 

function of the initial stress. 

B.V. Kmtrov 

velocity of propagation of the crack as a 
For a - 0 s we have 

..\ R (a* - b’L) 

and, therefore, for small a we can write 

{3.10) 

This gives the smallest value o,“(O) for which the development of a crack 
can begin 

a,* (0) = a-l ~pG$FXFj7C (3.11) 

At this point the problem merges with the theory of equilibrium cracks. 

Strictly speaklng, the problem assumes the presence of a small crack at the 

initial time, but the dimensions of the crack are not taken Into account in 
the ~t~~tic~ formulation, If this situation la COnSidered, it may be 
concluded that ~~‘(0) coincides with the limiting stress for the Initial 
crack. Thla allow8 UB to express the constant C In terms of the static 
modulus of cohesion X (see, e.g., [7]). Using the solution of the static 
problem [ 83 

2azor0 
Q*== - 

20,” 

x l/ra- r$ 
-- h-2 $. for z=o, r>r(j 

x 

where PO is the radiue of the initial crack and using the criterion of equi- 
librium [7], we obtain 

czro (0) 
=& 

This value must be equal to that from (3.11), whence 

C= 
_Ii?a~ 

2pLn (a*-- Z+) r0 
(3.12) 

In conclusion, the author would like to use this opportunity to express 

his gratitude to N,V.Zvolins~l, A.A.Gvozdev and V.A.Af~8fev for their 

attention to this work and for useful discussions. The allthor also thanks 

G.I.darenblatt for valuable discussion of the paper. 
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EDITORIAL NOTE 

*) The chapter mentioned on page 796 occurs only In the Russian edition of 
this book. 


